Robust Designs for Poisson Regression Models
نویسندگان
چکیده
We consider the problem of how to construct robust designs for Poisson regression models. An analytical expression is derived for robust designs for first-order Poisson regression models where uncertainty exists in the prior parameter estimates. Given certain constraints in the methodology, it may be necessary to extend the robust designs for implementation in practical experiments. With these extensions, our methodology constructs designs which perform similarly, in terms of estimation, to current techniques, and offers the solution in a more timely manner. We further apply this analytic result to cases where uncertainty exists in the linear predictor. The application of this methodology to practical design problems such as screening experiments is explored. Given the Author to whom correspondence should be addressed.
منابع مشابه
Bayesian D-Optimal Design for Generalized Linear Models
(ABSTRACT) Bayesian optimal designs have received increasing attention in recent years, especially in biomedical and clinical trials. Bayesian design procedures can utilize the available prior information of the unknown parameters so that a better design can be achieved. However, a difficulty in dealing with the Bayesian design is the lack of efficient computational methods. In this research, a...
متن کاملHurdle, Inflated Poisson and Inflated Negative Binomial Regression Models for Analysis of Count Data with Extra Zeros
In this paper, we propose Hurdle regression models for analysing count responses with extra zeros. A method of estimating maximum likelihood is used to estimate model parameters. The application of the proposed model is presented in insurance dataset. In this example, there are many numbers of claims equal to zero is considered that clarify the application of the model with a zero-inflat...
متن کاملModel selection via Bayesian information capacity designs for generalised linear models
The first investigation is made of designs for screening experiments where the response variable is approximated by a generalised linear model. A Bayesian information capacity criterion is defined for the selection of designs that are robust to the form of the linear predictor. For binomial data and logistic regression, the effectiveness of these designs for screening is assessed through simula...
متن کاملComparison between Efficiency of Poisson Regression Model and Negative Binomial Regression in the Analysis of Factors Affecting Mortality from Cardiovascular Diseases in Yazd Province in 2017
Introduction: Despite the advances in cardiovascular diseases, death caused by these diseases is still considered as the leading cause of mortality. In this study, some of the effective factors on the deaths caused by cardiovascular diseases were investigated Methods: This cross-sectional analytical study investigated the efficacy of Poisson regression models and negative binomial regres...
متن کاملAlternatives for logistic regression in cross-sectional studies: an empirical comparison of models that directly estimate the prevalence ratio
BACKGROUND Cross-sectional studies with binary outcomes analyzed by logistic regression are frequent in the epidemiological literature. However, the odds ratio can importantly overestimate the prevalence ratio, the measure of choice in these studies. Also, controlling for confounding is not equivalent for the two measures. In this paper we explore alternatives for modeling data of such studies ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Technometrics
دوره 54 شماره
صفحات -
تاریخ انتشار 2012